什么是隐函数的导数?
隐函数是二元二次隐函数,举例说明x^2+4y^2=4.对方程两边同时求导得到:2x+8yy'=0y'=-x/4y对y'再次求导得到:y''=-(4y-x*4y')/(4y)^2=4(xy'-y)/16y^2=(xy'-y)/4y^2=[(-x^2/4y)-y)]/4y^2 (此步骤是代入y'的结果.)=-(x^2+4y^2)/16y^3 (此步骤是代入方程x^2+4y^2=4.)=-4/16y^3=-1/4y^3所以:d^2y/dx^2=-1/4y^3二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f‘(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。F(x,y)=0即隐函数是相对于显函数来说的。扩展资料隐函数导数的求解一般可以采用以下方法:方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。参考资料:百度百科——二阶导数参考资料:百度百科——隐函数
隐函数的导数是怎么求的?
隐函数存在定理主要讲述如何从二元函数F(x,y)的性质来判定由F(x,y)=0所确定的隐函数y=f(x)是存在的,并且,这个函数还具有某些特性。在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。隐函数导数的求解一般可以采用以下方法:方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导。方法②:隐函数左右两边对x求导(但要注意把y看作x的函数)。方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值。方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
隐函数怎么求导?
1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导;2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x的导数,也就是说,一定是链式求导;3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法,这三个法则可解决所有的求导;4、然后解出dy/dx;5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。扩展资料:隐函数求导法则:隐函数导数的求解一般可以采用以下方法:1、先把隐函数转化成显函数,再利用显函数求导的方法求导;2、隐函数左右两边对x求导(但要注意把y看作x的函数);3、利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;4、把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。参考资料来源:百度百科-隐函数
隐函数如何求导
如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。扩展资料:对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。适合原方程的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程确定一个惟一的函数y=(x),不仅单值连续,而且连续可微,其导数由完全确定。隐函数存在定理就用于断定就是这样的一个条件,不仅必要,而且充分。